경로:
https://github.com/cvdfoundation/kinetics-dataset/blob/main/k600_downloader.sh
kinetics-dataset/k600_downloader.sh at main · cvdfoundation/kinetics-dataset
Contribute to cvdfoundation/kinetics-dataset development by creating an account on GitHub.
github.com
안에 내용:
#!/bin/bash
# Download directories vars
root_dl="k600"
root_dl_targz="k600_targz"
# Make root directories
[ ! -d $root_dl ] && mkdir $root_dl
[ ! -d $root_dl_targz ] && mkdir $root_dl_targz
# Download train tars, will resume
curr_dl=${root_dl_targz}/train
url=https://s3.amazonaws.com/kinetics/600/train/k600_train_path.txt
[ ! -d $curr_dl ] && mkdir -p $curr_dl
wget -c -i $url -P $curr_dl
# Download validation tars, will resume
curr_dl=${root_dl_targz}/val
url=https://s3.amazonaws.com/kinetics/600/val/k600_val_path.txt
[ ! -d $curr_dl ] && mkdir -p $curr_dl
wget -c -i $url -P $curr_dl
# Download test tars, will resume
curr_dl=${root_dl_targz}/test
url=https://s3.amazonaws.com/kinetics/600/test/k600_test_path.txt
[ ! -d $curr_dl ] && mkdir -p $curr_dl
wget -c -i $url -P $curr_dl
# Download annotations csv files
curr_dl=${root_dl}/annotations
url_tr=https://s3.amazonaws.com/kinetics/600/annotations/train.txt
url_v=https://s3.amazonaws.com/kinetics/600/annotations/val.txt
url_t=https://s3.amazonaws.com/kinetics/600/annotations/test.csv
url_ht=https://s3.amazonaws.com/kinetics/600/annotations/kinetics600_holdout_test.csv
[ ! -d $curr_dl ] && mkdir -p $curr_dl
wget -c $url_tr -P $curr_dl
wget -c $url_v -P $curr_dl
wget -c $url_t -P $curr_dl
wget -c $url_ht -P $curr_dl
# Download readme
url=http://s3.amazonaws.com/kinetics/600/readme.md
wget -c $url -P $root_dl
# Downloads complete
echo -e "\nDownloads complete! Now run extractor, k600_extractor.sh"
여기에 가보면 ->https://s3.amazonaws.com/kinetics/600/train/k600_train_path.txt
경로와 파일의 종류들이 나온다.
난
falling off chair, falling off bike, punching person (boxing)를 detection할꺼니까 이걸 치고 다운받아본다.
train용:
https://s3.amazonaws.com/kinetics/600/train/falling off chair.tar.gz
https://s3.amazonaws.com/kinetics/600/train/falling off chair.tar.gz
https://s3.amazonaws.com/kinetics/600/train/punching person (boxing).tar.gz
valid용:
https://s3.amazonaws.com/kinetics/600/val/falling off bike.tar.gz
https://s3.amazonaws.com/kinetics/600/val/falling off chair.tar.
https://s3.amazonaws.com/kinetics/600/val/punching person (boxing).tar.gz
이것만 다운받으면 된다!
다운받기 위해 만든 코드(k600_downloader_fall.sh)
# Download directories vars
root_dl="k600"
root_dl_targz="k600_targz"
# Make root directories
[ ! -d $root_dl ] && mkdir $root_dl
[ ! -d $root_dl_targz ] && mkdir $root_dl_targz
# Function to download files
download_tars() {
local TARGET_DIR=$1 # 다운로드 대상 디렉토리
local URL_FILE=$2 # 다운로드 URL이 포함된 파일
# URL 파일이 존재하는지 확인
if [ ! -f "$URL_FILE" ]; then
echo "Error: URL file '$URL_FILE' not found."
exit 1
fi
# 다운로드 디렉토리 생성
[ ! -d "$TARGET_DIR" ] && mkdir -p "$TARGET_DIR"
# 다운로드 실행
echo "Downloading files listed in '$URL_FILE' to '$TARGET_DIR'..."
wget -c -i "$URL_FILE" -P "$TARGET_DIR"
if [ $? -eq 0 ]; then
echo "Download completed successfully for '$URL_FILE'."
else
echo "Error: Download failed for '$URL_FILE'."
exit 1
fi
}
# Download train tars (falling-related classes)
TRAIN_URL_FILE="./k600_dataset_train_fall.txt" # 총 849 MB
TRAIN_DIR="${ROOT_DIR_TARGZ}/train"
download_tars "$TRAIN_DIR" "$TRAIN_URL_FILE"
# Download validation tars (falling-related classes)
VAL_URL_FILE="./k600_dataset_valid_fall.txt" # 39 MB
VAL_DIR="${ROOT_DIR_TARGZ}/val"
download_tars "$VAL_DIR" "$VAL_URL_FILE"
echo "All downloads completed successfully."
# 현재 남은 용량: 522 GB
# df- h로 확인함
실행방법: ./k600_downloader_fall.sh
k600_dataset_train_fall.txt는
https://s3.amazonaws.com/kinetics/600/train/falling off chair.tar.gz
https://s3.amazonaws.com/kinetics/600/train/falling off chair.tar.gz
https://s3.amazonaws.com/kinetics/600/train/punching person (boxing).tar.gz
'딥러닝' 카테고리의 다른 글
다운로드 할 파일 총 용량 알아보는 법 (0) | 2024.12.11 |
---|---|
인강) 코렙 시작하기 (4) | 2024.12.11 |
딥러닝의 평균 전처리 시간, 평균 추론 속도, 평균 후처리 시간이란? (0) | 2024.12.11 |
TSM(Temporal Shift Module) train (0) | 2024.12.10 |
mmdetection 장점, 백본, 모델에 대한 설명 (0) | 2024.12.10 |